按盖儿曼等的解释是把一对光子分开然后横看竖看A. 看的次序就是要传的信号。?


所有跟贴·加跟贴·新语丝读书论坛

送交者: 短江学者 于 2015-03-15, 13:09:38:

回答: 这个说的跟gell-mann对此实验的解释不同: B不是"变成"下。 由 短江学者 于 2015-03-15, 12:58:15:

The widespread foolishness associated with the Einstein, Podolsky, Rosen, Bohm effect and its experimental… the experimental confirmation of quantum mechanics; I treat that at some length in my book. It's very strange. It has to do perhaps with the fact that John Bell, although he did very good work and didn't make any mistakes, as far as I know, actually didn't like quantum mechanics and introduced words that are sort of prejudicial like 'non-local', and when people say that the EPRB effect is… shows that quantum mechanics is non-local, what they mean is that a classical interpretation of what's happening would have to be either non-local or involved negative probabilities or both. That's not the same as saying that it actually is non-local, but that's the vocabulary that has been introduced, to say that quantum mechanics is non-local. And sort of—it's… it’s a matter of giving a dog a bad name and hanging him, as far as I can tell. When the quantum mechanical predictions for this experiment were fully verified, I would have thought everybody would say, great and go home. Instead they say, there is something seriously peculiar here. Well the only thing that's seriously peculiar there is quantum mechanics!
Now, as I explained in the book, when you have a situation in which say, two photons are produced in a single event, for example by a spins decay of a spin-zero meson, they move in opposite directions. An observer makes a measurement on one of them and thereby learns some property of the other one even though the other one is far away. That's not any sort of affront to locality or special relativity or anything. The point is that classically this could happen to… to a single kind of measurement and John Bell referred to this as Bertelsmann's socks, talking about a mathematician who I assumed was fictitious but apparently was a real mathematician who wore one pink sock and one green sock, and if you saw the pink sock you would know that the other foot had a green sock. Well, similarly with these two photons: since you know their correlation, if you measure a property of one, you learn the property of the other. There's nothing peculiar about that. As John Bell emphasized, in quantum mechanics the entanglement of the two photons can be deeper than it can be classically, in the sense that you could then, you could instead measure a different property of one of the photons and you would learn that property of the other photon. Well that's peculiar to quantum mechanics, but it still doesn't give rise to any sort of non-locality. People say, loosely, crudely, wrongly, that when you measure one of the photons it does something to the other one; it doesn't. All that happens is, you measure a property of one and you learn the corresponding property of the other one. Now, what these people who try to confuse us will say is, yes, but you choose which property and thereby you choose what state the other one will be in. Well, the point is that the different measurement, say, of linear polarization of one revealing the linear polarization of the other, or circular polarization of one revealing the circular polarization of the other; those measurements are made on different branches of history, decoherent with each other, only one of which occurs. So it's simply not true! And Einstein's point of view, which was that if some variable could ever be measured with certainty it should have some sort of physical reality and a definite value, that's just wrong, that's just in contradiction to quantum mechanics. When two variables at the same time don't commute, any measurement of both of them would have to be carried out with one measurement on one branch of history and the other measurement on another branch of history and that's all there is to it. I… I presented that in my book, and of course Jim and I have argued for that, and some other people, but it doesn't seem to get across. People are still mesmerized by this confusing language of non-locality. What they do isn't necessarily wrong, lots of people do correct work on this subject, but the vocabulary makes it sound like something very different from what it is.



所有跟贴:


加跟贴

笔名: 密码: 注册笔名请按这里

标题:

内容: (BBCode使用说明